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t ABSTRAC T

The free late ral vibration of a nonlinear viscoelastic beam-column
subjected to an initial compressive axial load is conside red.
The constitutive law is formulated with a linear elastic te rm and
with power functions of stress in the transient and steady creep
te rms , and is of the nonlinear generalized Kelvin type.

By assuming that the stress caused by the oscillation is of much
smaller magnitude than the initial stress, the problem is linearized.
The problem is analyzed for five special viscoelastic models using
small defo rmation theory, and numerical results are discussed for
a stainless steel alloy.
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1. ~~ TRO 1)UCTION

As noted by Fk~ff ( l ) , c reep  in metals must have a damping effect on
mechanical vibration , since it absorbs energy. If one is considering
a vibration problem in a temperature  range for  which creep may be
present , the damping due to creep should be included in the ana lysis.
Cozzarell i, Wu and Tang (2) considered a beam constructed of a ma-
terial which may be represented by a nonlinear Maxwell-Kelvin model ,
and which was subjected to a free late ral vibration while under initial
axial tension. In this pape r we extend their analysis in two ways;
the f i rs t  of which is to emp loy a more general viscoelastic law of the
nonlinear gene ralized Kelvin type in order  to provide greater flexibi-
lity in the fitting of experimental data. And secondly we extend the type
of loading to include the case of initial axial compression. The growth
or decay of damped vibration under compression is a problem of prac-
tical importance in studies of structural reliability and safety , and
thus we give particula r att ention to this aspect of our study. Creep
collapse of a fuel element in a nuclear reactor is an example of such
problems which is of current interest.

The particula r case considered here is .icar viscoelastic beam-
column which is simply supported and ~~~~~ ~i initial axial compres-
sive load. The beam-column is assumed to be initially straight and of
an isothermal homogeneous medium with a rectangular cross-section.
By assuming tha t the initial stress increment is of much higher  mag-
nitude than the stress increment caused by the oscillation of the beam,
the problem is linearized in a manner analogous to that in ref. 2 .
The incremental approach to the theory of dynamic creep stability in
columns has been developed in a number of papers; of these we men-
tion in pa,rticula r Rabotnov and Shesterikov(~~’~~

), Jahsman and Field~
5
~,

Jahsman ” 6) , and Dist6fano and Sackrnan (
~ ’ 8)~ The present development

more closely parallels that in ref . 7- 8, since it is based on a nonlinear
viscoelastic relation rathe r than on a mechanical equation of state as in
ref. 3-6. Our specific goal is to demonstrate in detail how for actual
values of the creep parameters one may readily construct the comp lete
incremental displacement solution for rather gene ral constitutive rela-
tions primarily by means of simple hand calculations.

The gove rning displacement equation is derived in Section 2 using
small deformation theory, and the solution of this equation for a non-
linear Maxwell-Kelvin -Kelvin (or simpler) material is discussed in
Section 3. This lette r section emp loys the property of physically small
damping due to creep to develop simple but accurate estimates to the
roots of the characteristic equations. Numerical results for a stainless
steel are considered in Section 4, where we examine the effects of
steady creep, slow trans ient creep and rapid transient creep.



.~~~~~~~~~~

- 2 -

2. DEJUVATION OF THE GOVERNING EQUATION

2. 1 Constitutive Law

A one-dimensional constitutive law of the nonlinear gene ralized Kelvin
type , similar to the law discussed in detail and used in ref. 9, will be
employed here in its integral form

€ ( T )  = [IO1TII
+ Jj

~~~T11 dT ’+ ~~~ e ’f ~O ( T l 
1

i T/ t
i]~~~~~~(T

(1)

Here , T, € (T) and Q(T)  represent time , strain and stress respectively
and E is the modulus of elasticity; A is the steady creep parameter and
n is the steady creep power; t1 are retardation times , p1 are transient
creep pa rameters ar~d q. are transient creep powers ; and sgn~~(T) is the
usual signum function. By setting N=l in eq. (1) we arrive at the consti-
tutive equation used in ref . 2 , except that here the use of the signum
function enables us to conside r negative stresses.

Conside r a mate rial with an initial cons tant s t ress  
~~ 

(positive or nega-
tive), subjected to a small disturbance at T=T 0. Thi s disturbance is
translated into a small additional increment of stress , i. e.

cr(T) = 
~~~~~~~~~ ~

Q (’r) (2)

where ~r(T) is the stress increment and E is a small quantity.
It then follows that

~Q~$
fl 5gfl~~~ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3a)

~~~~~~~~~~ 1
~~~~

1
q1 

sgn .... (3b)

Also, as a result of the disturbance the strain assumes the fo rm

E. (T) = E (T) + ~~~ (T) + .... (4)

Substituting eqs . (2)-(4) into eq. (1), subtracting the relation for the
initial state , and retaining te rms of orde r ~~~, we obtain the following
linear constitutive relation in the increments:

T 1 N T t T  q.

~~(T) = ~ c r )  
~~(T )dT +~~~~ 

e ~~~~~~~~~~

_ T7V1 dT’ T ) T (5)

L 
.~~~~~~~
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Eq. (5) may also be expressed as the memo ry integral

+ 
0

(T~~T 1+ ~~~~

(6)

where we have used ~~( T )  = 0.

2. 2 Governing Equation for Late ral Vibration of an Axially Creeping
B cam-Column

As a specific example we conside r the vibration of an initially straight
Euler-Bernoulli beam-column, which is subjected at T=0 to a pres-
cribed axial force P0 (tensile or compressive) followed late r by a
small late ral disturbance at T=T 0. Using the perturbation technique
employed in obtaining eq. (6), the classical strain displacement and
equilibrium relations for such a beam-column yield the following rela-
tions in the first order terms :

~~(X , T) = - ~ ~
2
~~(x, T) 

(7a)

~ax 2

~
2i~(x , T) 

= ~ ~
2V

~(x , T) ~
2
~~(x, T) 

+ w(x , T) (7b)
°

T ~ T
0

In eqs . (7),  X is the neutral axis of the beam-column which vibrates
in the XY plane , V (X , T) is the late ral displacement, M = -.~~u YdA is
the bend ing moment for a beam-column with cross-section A, p is the
linear density , and W is the late ral load which will be used to dete r-
mine the initial conditions of the free vibration.

For convenience, we introduce the nondimensional quantities
T-T *2

V X o Tv =— ~~, x = t  , t =  
* 

, w =  W (8)
V T

Here , V~ is some c onvenient constant refe rence displacement, L is
the length of the beam, T is a convenient factor which has the dimen-
sion of time , and v, x, t and w are the non-dimensional late ral dis-
placement, axial coordinate , time and lateral load , respectively.

Combining eq s . (6), (7) and (8) we finally obtain the gove rning equation
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tr r  3Q v  ~~ v C v

~ ~J [a_ 2~~~~ b + I)

N -j.(t-v) 1
[i + c(L .- t~~ + 

~~ 

d . ( l_ e  
1 

)] 
dt (9)

t~~~ 0

where q. -l

a 
P
0L

2 

b 
PL4 a ;  c = 

En P /Al 
n-i 

T* 

d. = 

Eq1 
P0/AI 

I 
T~

El EIT* 1 Vi A~i 
1

*
i= l,...,N (10)

and where the second moment of area is IJAf 1dA. Note that the non-
dimensional fo rce a has the same sign as P0 , whereas b, c , d1 and j~are all positive nondimensional mate rial parameters. Also note that as
a result of mate rial nonlinearity the parameters c and d~ depend on I P0 1 .

lit Section 3, eq. (9) will be anaiyzed for five different models . These
models are , in order of decreasing complexity, nonlinear Maxwell-
Kelvin-Kelvin C t-.  (d1 and j 1-’ 0) for i ~ . 3) , nonlinear Maxwell-
Kelvin t ? 1

-~~0’ (d 1 and J j ~ -o 0) for i ~ 2]  , nonlinear standard solid

~ t -  °° (d1 and j~-. 0) for i ~. 2 and ).—. . (c -, 0)] , nonlinear Maxwell
t t ~1

.s
~~s (d j and j 1 -o O) f o r i l ]  and linear e la st i ctr . -.o. (d~~and j j -.. 0)

for 1) 1 and )~. ..s .o(c -. 0)) .  The differential form of eq. 
3
(9) for the non-

linear Maxwell-Kelvin-Kelvin (M-K-K) model is obtained via successive
differentiation as

i 
_____  

j 1+j 2 ~6 j 1j 2 ~ 5,%, 
- _____  L ____

b 4 3 + b 4 b 4 b 2 3 5 + 
3

~x b t  ~x b t  ~~x~~ t ~ x a t  ~ t ~ t

(c d
1
+ a2 i 1 + ~2 ) 

(~~~~ 
2
v

ax a t  ~~

2 2
+ c J lJZ ( b Z Z -w) t~~~0 (11)

?x ~t

The remaining differential  forms for the other special models are
easily obtained from the limits listcd above.

_ _ _ _
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N u x t , the nondimcnsional  loading function is expressed in the form

w g(x) ‘i (t) ( 12)

where  g(x)  is a function of x , an~d ~ (t) is a doublet function which
excites a f ree  vibration for t ~ 0 . For the solution of eq. ( 11) with
fo rcing function ( 12), it is convenient to set w=0 in eq. (i i ’  ~tnd use
initial conditions at t~ 0+. For these conditions we integrate eq. (11)
successively between t=0 (where all quantities vanish) and t=0 + and
obtain

v(x , 0+) = g(x) (13 a)

(13b)

2 4 2
- ~ d ~(x) ~ a d g(x~ 11

2~~~
’ ‘ b 4 b 2 C

d x  dx
3 c + d + d  4

~~~~~~~~~~~ ~~~~~ 1 2 d g(x)
b 4

dx

V~~~ 
~~~~~ ~ d g(x) Za d g(xl

2 8 
- 

2 6
b dx b dx

+ - (d 1j 1+d2j 2 )-(c + d1+d 2)2]d~~~~~ (13 e)

We see that the beam-column has in effect been deformed late rally

~=o~ in the form of g(x) and then released from rest .

3. SOLUTION OF THE GOVE RNING EQUAT ION

3. 1 The Characte ristic Equation

As previous ly noted , we shall conside r the free vibration of a simply-
supported nonlinear Maxwell-Kelvin-Kelvin (M-K-K) beam-column
(and simpler). Noting the boundary conditions

v(0 , t) = v(1, t) = = 
32v(l ,t) 

= 0 (14)

and the fact that all the space de rivatives in governing eq. (11) are of
even order , we shall take g(x ) of eq. ( 12) in the convenient form

g(x ) sin (m Tx)  (15)

where m indicates the mode of vibration. For m=l we see from eq. ( 13 a)

- ~~~ .- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and (is) that v( l/Z , 0 ) = 1, which in turn requires for this case that
V~ in eq. (8) equal the initial late ral displacement at mid-span.

A solution to eq. ( 11) then follows simply as

v(n , t) = T(t) sin ( m Tx)  ( 16)

where 1 (t) is a function of time. Substituting eq. ( 16) into eq. (11)
with the load w=0 , we obtain an ordinary differential equation in T(t) as

1~i (t ) + ~(c + d 1 + a2 + + j~)~~ (t)

+ [i)(~1c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 
[

~1~2~ c + ~ (c + d1 + d2 + j 1 + j 2 ) + + j 2]~ (t)

+ [i(~i c + i2c + j 1j2 + d 1j 2 + d2j 1) + ~ (t)

+ j 1j 2 i~ c f ( t ) 0 ( 17)

where ( ) indicates d/dt and for mode m

a — b
a =  2 2 ’ b 

~ 
(18)

l T m

The characteristic equation for the nonlinear M-K-K material is ob-
tained by substituting

f  (t) = e~~
t (19)

into eq. (17). From this point on we shall confine our attention to the
case of initial compression çá = - l~. I ) ,  for which the characteristic
equation is given by

+ ~~c + d1 + d1 + j 1 +

+ 
[~~(i 1c + j2c + j 1j2 + d 1j 2 + d2j 1) - 

~~~~~~~ +

+ 
{

~i~ 2~~c - t i .t ( c  + d1 + d2 + j ~ + j 2 ) +~~1

+ [-~~ i c i 1c + j 2c +j 1j 2 + d 1j 2 + d 2~i ) + ~~i J
2] ~

- j~j2 j~~~~~ c = 
~~~ 

-i 
= 0 (20)

i=0

where the o(. are the six coefficients in this fifth orde r equation. The
characte rist~Ic equation for the simpler models are obtained by allow-
ing the appro~~riate creep parameters to tend toward zero , as described
in Section 2. 2. For convenience, the coefficients 

~~~
. in the characte ris- 

.—.—..~ -—————--- -- -- - . - ~~-. -.-—~- -- — . .



I
tic equations for  a ) ]  of the modcls arc  summarized in Table 1. Note
that in the sum mation

p p-i

i=0

the quantity p is the order of the equation, which equals 2, 3, 3, 4 and
5 for the E, M, S-S, M-K and M-K-K materials respectively.

Having obtained the roots to the various characte ristic equations , the
gene ral solution to eq. (11) for unrepeated roots then follows from eqs .
(16) and (1 9) as

p

v(x , t) = c .e ~ sin(mlTx) (2 1)
i=1 ~

~ the c. are constants which may be dete rmined from initial con-
~ins , eq. (13).

L _ _ _ _ _ _ _ _  _ _ _ _ _  
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3. 2 1)iscussion of Roots nn d  Solutions for In it i a l  Co~~j2res s ion

In this section we examine the nature  of the roots to the five cha rac-
te r i s t i c  equations iis~.cd in Table 1 , and also discuss the correspond-
ing solut ions in accordance with eq. (2 1). ~~eg inning with the elastic
mate rial we see that the two roots arc imaginary for )~~ ki and ieal
(one positive) for (~~I 1. Th -~s the solution for l~ .l 1 exhibits expo-
nential growth , and \ve recognize the value E~ =1 [i.e. ~P01 = m2 Jr2EI/L 2

eq. (10) and eq. (18)1 as the critical buckling load for an elastic
column, On the other hand, the solution for ~k 1 oscillates with the
nondimensional natuial frequency

= ( J I ~~~~
/2 - 

(22 )

which decreases as the initial load increases. Since actual structures
are usually designed to operate at loads below this critical load, we
shall assume tha t for all the models

‘~ ‘ < 
. 

(23)

Now we consider as a group the four other viscoelastic models listed
in Table 1 , and remark that the damping due to creep is physically
small (see ref. 2). Accordingly, the solutions for all these viscoelastic
models will contain two terms which oscillate at essentially the elastic
frequency a as g iven by eq. (22) and decay siowiy with time. Such te rms
correspond to two roots with negative real parts

~~~~~~ 
p ± i ~

) whe re u’~~’~ (24)

which implies that the creep parameters are of small order ~ when
compared with U’. If we substitute eq. (24) with (22) into the character-
istic equation for the nonlinear M-K-K mate rial and ignore te rm s of
hi gher orde r , we find that the imagina ry part is identically satisfied
while the real part yields the relation

c + d 1 + d 2
2(1 - t ~~i) (25)

Eq. (25) applies ~qualiy well to the nonlinear M-K mate rial (d 2 =0),
the nonlinear S-S mate rial (c=d 2 =0), and to the nonlinear M material
(d 1=d 2 =o).

The remaining p-2 roots will now be examined for the various models
with the aid of Descarte s - rule of si gns. We see from Table 1 that in
all four models the coefficients 

~~ 
and are positive , and is also

positive due to inequality (23). For the Maxwell mate rial we note the

~~ 
is always negative , and thus the remaining third root for  this mate-

- - -
.. 

-
~~~~~

-
. , J . .

-
, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 L 1
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rial must be positive real, and the total solution contains two decay-
ing osc iLatory  t erm s and ox ic exponential ly g rowing  t er m . We may
obta in a good estimate for this positive real root by solving the cha-
racter is t ic  equation with ~ = 0 , s ince this is equivalent to dropping
the inertia and the associated oscillato ry t e rms . In so doing we obtain

~~~~ ~~~~ 
(2 6)

For the standa rd solid material we see that Q~~
3 

may be positive or
negative , depending on the value of ~~~~ Thus , if

‘ where~~ = j 1/(d 1+j 1) <  1 (27)

the remaining third root must be positive real , whereas if ~~ <

this root is negative real. The estimate to this r ot , as obtained
setting 1=O , is given by

I~~~ (d., +j 1) -j 1 (28
3 i - i ai

which exhibits the above mentioned behaviour in regard to sign. In con-
t ras t  to the M mate rial , the exponential term in the total solution for  the
S-S material grows in time only if the load is large enough for inequality
(27) to be satisfied. Thus for  this material there is a second critical
load I P~~ I defined by ~~ ~~~~~~ 

which upon using equations (10), ( 18) and
(27) yields the nonlinear expression in IP OC I

2 q 1-l
IP o~I L ~ q1~~P / A (  11

m7121 L q 
= ( 2 9)

The quantity in brackets is the effective reci procal elastic modulus of
the linear spring in serie s with the nonlinear Kelvin element (with Z’1 O) .
Note that t P Oc~ is less tha n the critical elastic buckling load , and also
that due to mate rial nonlinearity ~he elastic modulus of the Ke lvin ele-
ment- depends on IP OC I itself.

Conside r next the nonlinear Maxwell-Kelvin mate rial , whe re there are
two roots in addition to the complex pai r given by eq. (24). Again exa-
mining Table 1, we see that whereas 0(4 is always negative , °c~ may be
eithe r positive or ne gative . However , in both cases there is only one
variation in si gn , and thus there  is one positive real and one negative
real root. Settin g b=0 in Table 1, we obtain the following estimate to
these two real roots

—j 1+I~~I ( c+d 1+j 1) ± U i i _ I
~l(c+d i +i i )1 + 4 ( l _ I ~~l)~~ t j 1c~

~~3, 4 2( 1 - li’ ) (30)

~3
) 4 0 4~~ 4 < 0  t

_ _  
~~~—.- J
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which simplifies to eq. (26) and eq. (2 8) when the appropriate creep
parameters arc sd; equal to zero.

Finally,  we consider  the nonl inear  M ;ix we l l -K e lv i n -K e l v i n  mater ial ,
for  which  there arc three roots in addition to the two previously dis-
cu ssed com plex root s. If in Table 1 is negative , then for  the cor-
res ponding values of ~aI  one can prove that~~4 must also be negative.
However , if is positive , then 

~~ 
may be either positive Or negative.

For these  three cases there  is still only one si gn variation in the coef-
ficient sequence , and thus there is again one and only one positive real
root. The othe r two roots may in princi ple be ei ther  both negative real
or a second complex conjugate pair , but our numerical calculations
have y ielded no characterist ic  frequency othe r than the one near the
elastic frequenc j  (see Section 4). The th re e real roots are estimated
by the solutions to the cubic equation

F (c+d 1+d~~I~i]2 F (j 1c+j 2 c+d 1j 2+d 2j 1) I ]~~~~

~ ~L~i~z - 

‘ - i~~i I ~L~i~z 1 -~~ I
j 1j 2 c I~.I- 

- = 0  (31)

~3 > 0  ~~~~~~~~~~

An examinat~on of the test function for Cardan ’s fo rmula confirmed the
observation that , for typical values of the parameters, the three solu-
tions to eq. (31) are in fact real. Thus , the ove rall behaviours of the
M-K-K , M-K , S-S (with l~~ I >~~ ) and M mate rials are essentially the
same, i. e. there is an initial period of decay in g oscillation which is fol-
lowed by a period of exponential growth.

For convenience, the character and the estimates of the roots for the
various models are  summarized in Table 2 . The actual evaluation of
the coefficients c~ in the solution [eq. (21) ]  from these roots is some-
what tedious for the more gene ral models , and thus we will obtain the
results for the M and S-S models only. Utilizing Table 2 we write the
displacement solution for both these models as

v(x , t) sin m~Tx [(c i cos ~~t + c2 sin ~~t )e
_
~~

t
+ c3e ~3 ]  (32)

Also, initial conditions ( 13 a-c) with ( 15) and (22) yield

+ . ~v + ~
2v + 2 .v(X , 0 ) = sin m 7rx , -

~~
-
~~ (x , 0 ) = 0, —j -( x , 0 ) = -0  sin m~~x (33)

Evaluating c 1, c2 , c3 in eq. (32) f rom conditions (33), we obtain the
complete solution for the M and S-S models as 
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t rsin rn7~x ~~ 2 2 3 .~

2 2~ ~~~ + Z f t 3 +~~ ) cosl. t + sin .’t
(~~3+~~) +~~ (L

e + p 2 e 3
~~

Note that although the coefficient c3 is ve ry small (since .<~~~) it is
always positive , and thus for  positive 

~~ 
the displacement for t large

is in the same direction as the initial displacement .

For linear viscoelastic mate rials it is well known that the S-S mate rial
is characterized by two critical loads , and that for mate rials with a
long-t ime viscous behaviour (e.g. M, M-K , M-K -K) the lateral displa-
ceme nt always crows with time (e. g. see Distéfano, ref . 10). Accord-
ing ly, the results obtained here concerning the roots for a particular
nonlinear mate rial are consistent with previously established results
from the theory of linear viscoelasticity . The roots which we have es-
timated in this section wiU be obtained by numerical compute r calcu-
lations in the next section for a stainless steel beam at two levels of
load and temperature.

4. NUMERICAL RESULTS

In order to illustrate the roots and solutions discussed in the previous
section, we consider a 36 in. long stainless s~~’el (type 316) beam with
a rectangular cross-sect ion which is 2 in. wide by 3 in. deep. For the
axia l force P0 and the tempe rature 9 we conside r two cases , i. e.
P0 = -39 000 lb with 9 = 1300°F and P0 = -60 , 000 lb with ~ = 1500 °F,
where we shall soon see that the latte r case satisfies ~~~~~~~ > 

~~~~~ 
Csee

eq. (27) 1 while the former  satisfies i a i ~ ä~ . The material properties
p~ n, ~~ q1, A~1, 

~~~~~~~ 
as listed in Table 3 (with lb , hr and in. units) are

identical with those obtained in ref . 2 for a M-K model using the data
of Garofalo et al. (11, 12) The values of E listed in Table 3 for the two
temperatures were obtained by extrapolation from data at lower tem-
peratures give n in ref. 13, and they are slightly less than those used
in ref. 2 .

It remains for us to obtain some values for q2, ,Lt 2, ~z’ i. e. the creep
parameters in the second Kelvin element of the M-K-K model. Reexa-
mining the data in ref. 11, 12 we see that the relationship between the
“initial” strain and the stress is clearly nonlinear and greate r than the
calculated linear elastic strain. We assume here that the difference
between this initial strain and the calculated linear elastic strain is a
time-dependent strain due to rap id transient creep. In the absence of
more detailed data we set q2 = q~ and = x i0~~~, and then calcu-
late /(2 from the data in ref . 11, 12 at s tresses less than 10 , 000 psi.
Although these estimated values are rather c rude , the y serve the pu r-
pose of enabling us to illustrate the effect  of rapid t ransient  creep. All
material  pa rameters for both tempe ratures are listed in Table 3. 

~~~~~~~~~ .~~~~~—~~~- ---- -— - -- -— -~~~~~~~~~~ -.~~~~~~~~~~~~ - —
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TAB LE 3 - Mater ia l  Properties

. l3 OC 1500

p, i0~~~ lb-.hr 2/in2 
- 

3. 45 3.45

E, JO ~ lb/in2 2 ,0  1.5

n = q 1 = q 2 3. 64 3. 50

A ~~~ lb/in
2_l,.rh/fl 19.18 7.86

~‘i’ 
IO~ lb/in2 3.10 

- 
2.11

~~~ 
10 ’1~ lb/in2 7. 45 5. 26

x 10~ 
- 333 21.,?

TABLE 4 - Nondimensional Constants

• P = -30, 000 lb P -60~ 000 lb
= 1300°F e° = 1500°F

4.377x10 2 l 167 x 10 ’

b 8.566xl0
7 

- 1.142x10
6

6.943 x l0 6 1.071 x

d1 l 585 x 10 5 4.925x10 3

6.5l6x10 3 2.013

~2~~1 
x ~~ 8.342 x 10~~ 1.280 x 10

_i

5.006 x 10 2 2.592x10 3

- 
— - - -

~~~~~~~~~~~~~~~~~~
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For the evaluation of the nondiniensj onai mate rial constants  from
eqs. ( 10) and ( 18) ‘.4’e select m= 1 (f i rst  mode) and T* 1/3600 hr ,
which converts real time scale 1’ -T 0 from hours to seconds [eq. (8)) .
Material  constants I~~I , b , c , d 1, d 2, j~ , j 2 p lus the crit ical  load
req. (2 7 ) )  are listed in Table 4 for the two previously mentioned cases

of load and tempe rature . Note that for P0 -30 , 000 lb at 9= 1300°F we
have ~~~~ 

~~~~~~
< 1, whereas for P0 =-6 0 , 000 lb at e= 1500°F we have

~~~ < 1 . Thus , while both cases are below the crit ical linear elas-
tic load as required by eq. (23), or~ly the fo rmer case is also below
the additional critical load for a standard solid mate rial.

Using the nondimensional constants listed in Table 4, the roots to the
characteristic equations given in Table 1 were obtained by a program
on a high speed compute r. The roots for P0 -30 , 000 lb at e = 1300°F
are presented in Table 5, and the roots for  P0 = -60 , 000 lb at e = 1 500°F
are given in Table 6. When these nume rically computed roots are com-
pared with the simp le estimates summarized in Table 2, we find that the
estimates are remarkably accurate and in fact agree with the compute r
obtained roots to four significant fi gures . Finally, as an illustrative case
we give below the complete numerical solution for the M model at

= -60 , 000 lb with 0 = 1 500°F as obtained from eq. (34) and Table 6:

v(x. t) = sin Tx(4 . 755 x io ’~ exp(l .416 io~~ t) + exp(-6. 064 x 10 4t)

[cos(879. 4 t) + 6.896 , iø-7 ~~ (879.4 t)1)- • (35)

The deflection solutions based on the roots listed in Tables 5 and 6 are
in complete conformity with the predictions of Section 3. 2. As expected ,
all solutions contain two te rms which oscillate at the elastic frequency w
req. (22)] , although the sin~~ t te rm is neg ligible in the present exam-
ple since the motion starts from rest [e. g. see eq. (35)) . As predic-
ted by eq. (25) for ~~~~, the rate of decay of these oscillato ry terms in-
creases as the load and temperature increases and as additional creep
compone nts are added to the mode l. The material with the large r Va-
lues of I P01 and 0 (Table 6) and with the rapid transient creep terms in-
cluded (i.e . M-K-K) exhibits sufficient damping (j 3  = 1.143) to cause
cOmplete decay of the oscillato ry te rms ove r a pe riod of several seconds .

Examining the real roots in Tables 5 and 6 , we see that as predicted
Only the S-S mate rial at the lowe r values of ~PØI and 0 (Table 5) does
not have an associated po~ itive real root. In this one case the perturbed
displacement tends toward zero as t -’-~ °, and thus thi s mate rial unde r
thes” conditions may be te rmed “ stable ”. In the othe r seven cases the
pertu rbed displacement tends toward infinity as t -~~ , and accordingly
these may be conside red “unstable ”. One can show that the coefficienL
of the exponentially growing te rm is always positive as in eq. (35), and
thus in these cases the column “collapses ” (afte r a period of decaying
oscillation) in the same direction as the initial disp lacement.  

~~
— “ --—----- -—-- —-— --- .-- ------ - 
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TABLE 5 - Roots for the Various Models at
P0 = -30,000 lb 6 = 1300°F

Mate - 
g1, 2~~~~ 1~ ±~~~ ~ 3 ~4

rial w

E - 1. 057x10 3 
- - -

M 3.630xl0 6 1.057x103 3.178xl0 7 - -

S— S 8.283x10 6 l ..057x103 -l .085xl 0 7 - . -

M-K 1 192x 1 0 5 l .057x 10 3 6. 301x 10 7 -4 .208x10 7 
-

M-K-K 3.450x10 3 1.057x 10 3 6. 628x10 7 -8.117x10 3 -4.148x 10 7

I

TABLE 6 - Roots f o r  the Various Models at

P = -60 , 000 lb 9 1500°F0

Mate - 
~1,2 

= 

— 

~3 ~~~~rial

_ _  
I’, 

_ _ _  _ _ _ _  _ _ _ _  _ _ _ _

E - 8.794x102 - - -

M 6.064xl 0 4 
8.794x10

2 
l .4l6x10

4 
- -

S-S 2.788xl0 3 
8.794x102 6.380xl0 4 

- -

M— K 3. 394x10 3 8 7 94x 102 7. 819x10 4 -2.318x10 6 
-

M-K-K 1.143 8.794xl02 l.396x10~~ -7,371xl0 4 -2.2 54x10 6 

--
~~~

- - 
~~~~~~

-—,—-—
-—- ----- .. -.- -
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5. CONCLUDING REMARKS

We have demonstrated in detail how one may use simple hand calculations to
construct the complete incremental displacement solution for a vibrating
nonlinear viscoelastic beam under initial axial compression. Solutions
were obtained for rather general constitutive relations , including those
with the long—time viscous behaviour which is characteristic of metals
at high temperatures . For such cases the lateral displacement always
grows with time , even if the load is less than the critical load . The
solutions obtained may be used to estimate a critical time at which the
lateral displacement exceeds a prescribed acceptable value.

I
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APPENDIX - LIST OF SYMBOLS

a, h , c, d., j. iiondiinensional mate rial constants , eqs . ( 10)
~~~
, T nondimensional material constants for mode m, eqs. (1 8)

nondiinensional critic-i l load for  standard solid mate-
rial , eq. (2?)

A cross-sect ional  area of beam

c1 constants of integration, eq. (21)

E modulus of elasticity

small quantity

g( x) space dependence of nondimensional loading function,
eq. (12)

I second moment of area

L length of beam

m vibration mode numbe r

M(X, T) bending moment

n creep power , eq. (1)

N number of Kelvin elements

p order of characte ristic equation, Table 1

P initial axial force on beam

critical load for standard solid material, eq. (29)

q. creep power of i-th nonlinear Kelvin element, eq. (1)

t nondimensional time, eqs . (8)

T time

*T constant reference time , eqs . (8)

T0 time at beginning of disturbance

‘1(t) function of time

v nondimensional late ral dis placement, eqs . (8)

V lateral displacement

V~ constant refe rence displacement, eqs. (8)

W(X , T) lateral load on the beam

w(x , t) nondimensional late ral loading, eqs. (8)

x nondimensional axial coordinate , eqs. (8)

X centroidal axis of beam

Y , Z coordinates in cross -section of beam

- .

~ 

—
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LIst of Symbols (continued) 
-

magnitude of real part of complex roots , eqs . (24)
and (25) H

€ strain

doublet function

0 temperature

steady creep paramete r, eq. (1)

u1 transient creep paramete r of i-th nonlinear Kelvin
element, eq. (1)

root of characteristic equations, Table 1

linea r density

stress

V. retardation time of i-th Kelvin element, eq. (1)

nondimensional frequency, eq. (22)

( )~ indicates initial value during interval T < T

• ( )  indicates inc rement due to lateral disturbance

( )  indicates d/dt

4 -
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